Modifying DataFrames with Ease: Unlocking the Power of the update() Method

When working with data, modifying DataFrames is an essential task. The update() method makes this process seamless, allowing you to update a DataFrame with values from another DataFrame. But how does it work, and what are its capabilities?

The Syntax of Update()

The update() method’s syntax is straightforward:

update(other, join='outer', overwrite=True, filter_func=None, errors='ignore')

Let’s break down its arguments:

  • other: The DataFrame used to update the original DataFrame.
  • join: Specifies which of the two objects to update. Defaults to ‘outer’.
  • overwrite: Determines whether to overwrite NULL values. Defaults to True.
  • filter_func: A function executed for each replaced element. Defaults to None.
  • errors: If set to ‘raise’, a ValueError is raised if both DataFrames have a NULL value for the same element. Defaults to ‘ignore’.

Updating DataFrames in Place

The update() method updates the DataFrame in place, returning None. This means you don’t need to reassign the result to a new variable.

Real-World Examples

Example 1: Update Without Overwriting Non-Missing Values

In this scenario, we want to replace only the null values in df1 while keeping the original not-null values. By setting overwrite=False, we achieve this.


import pandas as pd
import numpy as np

df1 = pd.DataFrame({'A': [1, 2, np.nan], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'A': [7, 8, 9], 'B': [10, 11, 12]})

df1.update(df2, overwrite=False)
print(df1)

Example 3: Specify Values to Update Using Filter Function

What if we want to update only specific values? That’s where the filter_func argument comes in. In this example, we used a filter function to update only values greater than 100.


import pandas as pd

df1 = pd.DataFrame({'A': [50, 150, 250], 'B': [400, 500, 600]})
df2 = pd.DataFrame({'A': [70, 170, 270], 'B': [470, 570, 670]})

def filter_func(x):
    return x > 100

df1.update(df2, filter_func=filter_func)
print(df1)

By mastering the update() method, you’ll be able to modify your DataFrames with precision and ease, unlocking new possibilities for data analysis and manipulation.

Leave a Reply