Transform Your DataFrames with Ease: Mastering the rename() Method

Understanding the Syntax

The rename() method’s syntax is straightforward: df.rename(columns, index, inplace). But what do these arguments mean?

  • columns: A dictionary specifying new names for columns.
  • index: A dictionary specifying new names for index labels.
  • inplace: A boolean value indicating whether to modify the original DataFrame (True) or return a new one (False).

Renaming Columns with a Dictionary

Let’s start with a simple example. Suppose we have a DataFrame df with columns Age and Income. We can rename them using a dictionary:

df.rename(columns={'Age': 'Customer Age', 'Income': 'Annual Income'}, inplace=True)

This code updates the original DataFrame df with the new column names.

Renaming Index Labels with a Dictionary

What about renaming index labels? We can do that too! Let’s say our DataFrame df has index labels 0, 1, and 2. We can rename them using another dictionary:

df.rename(index={0: 'Row1', 1: 'Row2', 2: 'Row3'}, inplace=True)

Again, the original DataFrame df is updated with the new index labels.

Renaming Columns with a Function

But what if we want to apply a more complex renaming logic? That’s where functions come in handy! Let’s define a function column_rename_function() that adds a prefix “new_” to column names:


def column_rename_function(x):
    return 'new_' + x

df.rename(columns=column_rename_function, inplace=True)

This code updates the DataFrame df with new column names, such as new_A and new_B.

By mastering the rename() method, you’ll be able to transform your DataFrames with ease and take your data analysis to the next level.

Leave a Reply