Unlock the Power of numpy.nanmean(): A Comprehensive Guide
Ignoring NaNs with Ease
When working with numerical data, encountering NaNs (Not a Number) is a common occurrence. Fortunately, the numpy library provides a powerful function to compute the arithmetic mean while ignoring these pesky NaNs: numpy.nanmean(). In this article, we’ll dive into the world of numpy.nanmean() and explore its syntax, arguments, and return value.
The Syntax of numpy.nanmean()
The syntax of numpy.nanmean() is straightforward:
numpy.nanmean(array, axis=None, dtype=None, out=None, keepdims=False, where=True)
Understanding the Arguments
array
: The input array containing numbers whose mean is desired. It can be an array-like object.axis
: The axis or axes along which the means are computed. It’s an optional argument that defaults toNone
, meaning the mean of the entire array is taken.dtype
: The datatype to use in the calculation of the mean. It’s an optional argument that defaults toNone
, which means the datatype of the array elements is used.out
: The output array in which to place the result. It’s an optional argument that defaults toNone
, meaning the result is stored only if assigned to a variable.keepdims
: A boolean that specifies whether to preserve the shape of the original array. It defaults toFalse
.where
: An array of booleans that specifies which elements to include in the mean. It defaults toTrue
.
Return Value: The Arithmetic Mean
The numpy.nanmean() function returns the arithmetic mean of the array, ignoring NaNs. If all elements are NaN, the function returns NaN as the output.
Examples Galore!
Let’s explore some examples to see numpy.nanmean() in action:
Example 1: Finding the Mean of a ndArray
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(np.nanmean(arr)) # Output: 3.0
Example 2: Specifying Datatype of Mean
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(np.nanmean(arr, dtype=np.float64)) # Output: 3.0
Example 3: Using Optional keepdims Argument
import numpy as np
arr = np.array([[1, 2], [3, 4]])
print(np.nanmean(arr, axis=0, keepdims=True)) # Output: [[2.], [3.]]
Example 4: Using Optional where Argument
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
mask = np.array([True, False, True, False, True])
print(np.nanmean(arr, where=mask)) # Output: 2.5
Example 5: Using Optional out Argument
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
out = np.empty(())
np.nanmean(arr, out=out)
print(out) # Output: 3.0
With these examples, you’re now equipped to harness the power of numpy.nanmean() to compute means while ignoring NaNs. Remember to use the optional arguments to tailor the function to your specific needs.